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Dynamic light scattering (DLS) is a promising technique for early cataract detection and for
studying cataractogenesis. A novel probabilistic analysis tool, the sparse Bayesian learning (SBL)
algorithm, is described for reconstructing the most-probable size distribution of α-crystallin and
their aggregates in an ocular lens from the DLS data. The performance of the algorithm is
evaluated by analyzing simulated correlation data from known distributions and DLS data from
the ocular lenses of a fetal calf, a Rhesus monkey, and a man, so as to establish the required
efficiency of the SBL algorithm for clinical studies.
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1. Introduction

Cataract is the leading cause of impaired vision
worldwide, especially in developing countries.
Cataracts usually develop slowly but eventually
interfere with vision. Therefore, early diagnosis of
cataracts and study of cataractogenesis can provide
the appropriate preventive measures with much
attention on the development of drugs and inves-
tigation of their effects on the medical treatment of
cataract.

With the invention of a compact fiber optic
dynamic light scattering (DLS) probe,1,2 early
cataract detection is possible. DLS has been proven
to be an efficient non-invasive technique for mea-
suring the sizes of colloidal particles and found
applications in the study of dynamical properties
of biological materials in vivo.3

DLS has been shown to be well suited for the
diagnosis of early cataracts,1 ,2,4 which are caused
by aggregation of crystallin proteins in the lens that

strongly scatters light. Lens opacity increases with
the amount of large protein aggregates and eventu-
ally affects vision. In clinical studies, DLS has been
proven to be far more superior (several orders of
magnitude) in sensitivity than the gold standard
imaging techniques used currently in the evaluation
of cataractogenesis.

In a DLS experiment, light scattered off the dif-
fusing colloidal particles is detected and processed
at discrete delay times τi, i = 1, 2, . . . ,M to yield
an intensity time-autocorrelation function (TCF),
〈I(t)I(t + τi)〉 ≡ G(2)(τi), a second-order TCF for
the electric field, where I(t) = E∗(t)E(t) and E(t)
denote, respectively, the intensity and electric fields
of the scattered light at time t, and the braces indi-
cate averaging over t. The TCF provides the data
for an inverse problem for inferring the translational
diffusion coefficient or size distribution of the par-
ticle system. For Gaussian signals, the first-order
TCF for the electric field, 〈E(t)E∗(t + τi)〉≡g(1)(τi)
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is related to the intensity TCF by Siegert’s relation:

G(2)(τi) = A(1 + β|g(1)(τi)|2), (1)

where A is the measured baseline and β is an instru-
ment coherence factor.

The electric field TCF is related to the distri-
bution P (Γ) of the particle system by

|g(1)(τi)| =
∫ ∞

0
P (Γ)e−ΓτidΓ, (2)

where Γ is the decay constant, which is related to
the diameter d of the particles by

Γ =
kBTq2

3πηd
. (3)

Here,

q =
4πn0

λ
sin

θ

2
(4)

is the momentum transfer, kB is Boltzmann’s con-
stant, T is the absolute temperature, η and n0 are,
respectively, the viscosity coefficient and refractive
index of the fluid, λ is the wavelength of the laser
light and θ the scattering angle at which the signal
is collected.

Equation (2) is very ill-posed, since it is
extremely sensitive to experimental uncertainties,
such as noise in the data.5,6 To retrieve the
information about a particle system, various
analysis tools have been developed. Notably,
the cumulant method,7 exponential sampling
method,8,9 CONTIN10 and maximum entropy
method (MEM)11–15 are some common analysis
tools that enjoy reasonable reliability and efficiency
in many applications.

In this paper, we describe a fully probabilis-
tic analysis tool, the SBL algorithm,16 with easy
implementation for determining particle size distri-
bution (PSD) from DLS data and, in particular, for
the diagnosis of early cataract in humans. In view
of the fact that experimental data resulted from a
measurement process which is necessarily statistical
in nature, the use of an analysis technique based on
Bayesian statistical learning theory is suitable. In
passing, we note that Bryan’s maximum entropy
algorithm14,15 is based on Bayesian inference and is
also probabilistic in nature. It uses the maximum-
entropy function as a regularization term, whereas
the SBL algorithm uses a quadratic function and
leads to a set of simple update equations for easy
implementation.

The SBL algorithm16 is a flexible version of the
relevance vector machine (RVM), which is known

to enjoy more advantages than the state-of-the-art
technique of the support vector machine (SVM).17

Thus, it is useful to understand how the SBL algo-
rithm can be applied to analyze DLS data to extract
reliable results, specifically, for the application of
DLS data in clinical studies, where Bayesian inter-
pretation of the results with strong statistical evi-
dence is required. Moreover, reliable and robust
diagnostic algorithms are essential, since the algo-
rithm is less sensitive to initial input parameters,
such as the domain of the distribution, which is
related to resolution as dictated by the data quality.
For a detailed discussion on the experimental con-
siderations for obtaining quality data and also on
various data analysis methods, please see Refs. 18
and 19.

In Sec. 2, we briefly describe the SBL algorithm
and apply it to DLS. In Sec. 3, simulated data gener-
ated from unimodal and bimodal distributions will
be analyzed using the SBL algorithm, and DLS data
from the ocular lenses of a fetal calf, a monkey, and a
man will be analyzed to demonstrate the efficiency
of the SBL algorithm for early cataract detection
and monitoring.

2. Application of the SBL
Algorithm to DLS

The SBL algorithm was introduced by Tipping16 for
solving regression and classification problems and
has found many promising applications.20–23

To use the SBL algorithm for DLS, Eq. (2) is
discretized as

yi =
N∑

j=1

Φijωj + εi,

Φij ≡ e−Γjτi , i = 1, . . . ,M, (5)

where εi are the errors in the data yi. Solving Eq. (5)
for ωj amounts to defining an “inverse” for the ker-
nel Φij in some representation. Here, we are dealing
with an inverse problem for an oversampled DLS
dataset where the amount of independent informa-
tion is much less than the number of measured data
points (M � N).

SBL is a probabilistic approach to finding a
sparse solution to the supervised learning problem
[Eq. (5)]. Here, ε is the noise from a zero-mean
Gaussian process. For many practical problems, the
challenge is to determine the most sparse repre-
sentation of the reconstruction coefficients ω =
[ω1, ω2, . . . , ωN ]T with the fewest nonvanishing ωj,
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i.e., only few “relevance vectors” or basis functions
are significant.

For our DLS data analysis, we consider using
the SBL algorithm to find smooth PSD. Essentially,
this requires drawing an inference. At the heart
of statistical inference lies Bayes’ theorem, which
relates the posterior and prior probabilities of two
events. Thus, solution to Eq. (2) is more appro-
priately determined with a probability-based algo-
rithm, and SBL provides a fully probabilistic algo-
rithm.

In the context of Bayesian statistics, we calcu-
late the posterior or conditional probability p(ω|y)
of ω given the DLS data y. The SBL approach
assumes that the noise in the data y is normally
distributed with zero mean and variance σ2, i.e.,

p(εi|σ2) ∼ N (0, σ2), i = 1, 2, . . . ,M. (6)

Then the likelihood of the data reads

p(y|ω, σ2) = (2π)−M/2|B|1/2

× exp
(
−1

2
(y − Φω)T B(y − Φω)

)
,

(7)

where B = σ−2I is a global parameter in SBL and
its adjustments for cases where errors depend on
the data values may be considered. Now, maximiz-
ing the likelihood (7) amounts to minimizing its
exponent or chi-square. By requiring the weights
to be positive, we are led to solving the inverse
problem conveniently with the nonnegative least
squares (NNLS) algorithm.24 In general, maximum-
likelihood estimation from Eq. (7) will lead to
severe overfitting, and so for smooth functions, an
automatic relevance determination (ARD) Gaus-
sian prior25 for the weights is introduced:

p(ω|α) = (2π)−N/2|α|1/2 exp
(
−1

2
ωT αω

)
, (8)

where α = diag(α1, α2, . . . , αN ) is a regulariza-
tion matrix with diagonal elements and plays essen-
tially the same role as Marquardt’s parameter in
other analysis methods, such as MEM and CON-
TIN, where the Marquardt’s parameter is a scalar
and the data have different errors. The introduction
of a hyperparameter αj for each weight ωj leads
to a sparse model. However, it is to be noted that
since the degree of smoothing is to a large extent
controlled by the choice of kernel, a possibility of
severe overfitting or oversmoothing can still result.

We note that α and σ2 are nuisance param-
eters, having Gamma distributions as suitable
priors16:

p(α) =
N∏

i=0

Gamma(αi|a, b), (9)

p(σ2) = Gamma(σ2|c, d), (10)

with Gamma(α|a, b) = Γ(a)−1baαa−1e−bα, and Γ(a)
being Euler’s Gamma function. For non-informative
and uniform (over a logarithmic scale) priors, we
might fix a = b = c = d = 0. For given data
y and the hyperparameters, the posterior distribu-
tion of the weights can be evaluated analytically
in view of the fact that the likelihood of the data
and the priors for the weights are of the Gaussian
form. Indeed, by using the probability distributions,
p(y|ω, σ2) and p(ω|α), and Bayes’ theorem

p(ω|y,α, σ2) =
p(y|ω, σ2)p(ω|α)

p(y|α, σ2)
, (11)

we obtain the marginal likelihood, or evidence, for
the hyperparameters:

p(y|α, σ2) =
1

(2π)M/2

1
|σ2I + Φα−1ΦT |1/2

× exp
{
−1

2
yT (σ2I + Φα−1ΦT )−1y

}
,

(12)

and the weight posterior:

p(ω|y,α, σ2) =
1

(2π)N/2|Σ|1/2

× exp
{
−1

2
(ω − µ)T Σ−1(ω − µ)

}
,

(13)

where

Σ =
(
ΦTBΦ + α

)−1
(14)

denotes the variance matrix and

µ = ΣΦTBy, (15)

the estimate of ω. From Eqs. (5) and (15), we have
the estimate of data as follows:

ŷ =
[
ΦΣΦTB

]
y ≡ Sy, (16)

where S is known as the smoothing or hat matrix.
Returning to the marginal likelihood (12) and

the weight posterior (13), we note that they depend
on the hyperparameters. In the context of Bayesian
inference, we define the hyperpriors for α and σ2
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and integrate out these hyperparameters. To do so,
we maximize Eq. (12) or equivalently p(α, σ2|y)
with respect to α and σ2 with their assumed
non-informative priors.16 Thus, to find the val-
ues of α and σ2 that maximize Eq. (12), we fol-
low an iterative re-estimation approach to finding
the hyperparameters that maximize the hyperpa-
rameter posterior p(α, σ|y), such that appropriate
update equations can be derived. Given Bayes’ rule

p(α, σ2|y) =
p(y|α, σ2)p(α, σ2)

p(y)

∝ p(y|α, σ2)p(α)p(σ2) (17)

with priors given by (9) and (10), the maximization
of (17) is obtained by differentiating log(p(α, σ2|y))
with respect to log(αi) and log(σ2). Leaving out the
details of the derivations, which can be found in
Ref. 22, we list the update equations for the hyper-
parameters:

(αi)new =
γi

µ2
i

, i = 1, 2, . . . , N, (18)

(σ2)new =
‖y − Φµ‖2

M − ∑N
i=1 γi

, (19)

where

γi = 1 − αiΣii, i = 1, 2, . . . , N. (20)

We now summarize the iterative steps for obtaining
the most-probable values α

MP
and σ2

MP
and hence

the estimates of the weights and data:

(1) Assign initial values to α and σ2. e.g., α = 1010

and σ2 = 10−6.
(2) Compute Σ in Eq. (14).
(3) Compute µ in Eq. (15).
(4) Compute γi in Eq. (20).
(5) Compute the hyperparameters in Eqs. (18) and

(19).
(6) Reset µi to a positive value at every iteration

if µi becomes negative by multiplying it by a
small factor, e.g., −0.01, so as to ensure the
nonnegativity of the solution {µi}.

(7) Go to steps 2–6 until the hyperparameters α
and σ2 converge.

Due to its iterative property, the SBL algo-
rithm may be applied to analyze DLS data of ocular
lenses in two ways. First, we can study the solu-
tions generated by the algorithm at various iter-
ations. The solutions at the initial iterations are
smooth distributions, while those at larger itera-
tions are sparser. By using the SBL algorithm, we

first consider simulated data generated from smooth
distributions and reconstruct the most-probable or
optimal solutions. We define the most-probable or
optimal, smooth solution at some iteration by some
goodness-of-fit criterion.

To study DLS data of an ocular lens, we may
consider using the SBL algorithm to reconstruct
sparse solution, which gives values only at the “rel-
evant” particle sizes, and the distribution provides
a categorized list of the α-crystallin of few particle
sizes. However, the PSD is not smooth and does not
properly reflect the true distribution.

To analyze DLS data by the SBL algorithm, we
have to assign the boundaries and the grid points of
the PSD, which depends on the particle system and
the data quality. In most analysis methods, one uses
N logarithmically-spaced grid points for PSD. This
is particularly efficient to describe highly polydis-
perse systems. We define the first and last values of
the range of the decay constants (or particle sizes),
respectively, by Γ1 = Γmin and ΓN = Γmax. The
number of points N can be chosen to be large, but
larger N requires more computation time to invert
the N × N regularization matrix for the kernel Φij

at each iteration.
For a fixed resolution, an increase in the ratio

ΓN/Γ1 should be accompanied by an increase in
the number of grid points N . Accordingly, to
obtain a distribution, some operational steps are as
follows:

(1) Determine the Γ values for the distribution. To
obtain the reconstructions from simulated data,
we shall use the first value Γ1 = 1 s−1 and the
last value ΓN = 104 s−1. We may initially use a
broader range and appropriately adjust it after
some computational trials.

(2) Choose a reasonable value for the number of Γ
values. We shall use N = 100 in this paper.

(3) Check the goodness-of-fit to the data, since we
are essentially performing a regression analysis
on the data. We evaluate the residuals

ri ≡ (yi − yi), yi =
N∑

j=1

Φijµj , (21)

where µj denotes the estimate of ωj . It is useful
to calculate the residual norm (Rnorm)

‖y − Φµ‖2 =

√√√√ M∑
i=1

r2
i , (22)
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which is a measure of the goodness-of-fit. When
each data point has its error σi, we should use
the residuals

ri ≡
(

yi − yi

σi

)
, i = 1, 2, . . . ,M. (23)

In the SBL algorithm, most of the parameters
αi will be pushed to infinity with their correspond-
ing ωi being zero, resulting in only few nonvanishing
ωi’s. Normally, 15 or fewer iterations are needed to
get a stable sparse distribution.

To obtain smooth PSD, we shall evaluate the
reconstructions at various iterations. One of the
reconstructions with reasonable goodness-of-fit will
be the optimal solution. However, how to obtain the
optimal distribution requires a criterion for justify-
ing our choice. The common quantities that change
with iterations are the residual norm and the solu-
tion norm. The behaviors of these quantities with
iterations are dictated by the data quality.

In regularization methods, the L-curve26–28

provides a visual tool to understand the trade-off
between the magnitude of the regularized solution
(solution norm) and the quality of the fit to the data
(residual norm). The optimal regularization param-
eter lies on the corner (vertex), the point of maxi-
mum curvature, of an L-curve, which is defined by
connecting consecutive points in the sequence

(log ‖y − Φµk‖2, log ‖µk‖2), k = 1, 2, . . . (24)

by straight lines, where k denotes the sequence
of regularization parameters. By using the L-curve
method, we take k to be the iteration number and
determine the required iteration for an optimal,
smooth solution from the L-curve [Eq. (24)]. This
method can be very useful when the errors in the
data are not known. However, in many situations,
computational round-off errors and data quality can
cause L-curves to differ from an “L” shape.29

Alternatively, if an estimate of the variance of
the noise vector is known, Morozov’s30 ,31 criterion
can be considered and is related to the chi-square
statistic

χ2 =
1
M

M∑
i=1

(
yi − yi

σi

)2

, (25)

which measures the misfit between actual noisy
data yi and the data yi that would be observed in
the absence of noise. Typically, we choose a crite-
rion such that χ2 ≈ 1. At values of χ2 > 1, the
calculated and the observed data are not in agree-
ment, while at values of χ2 < 1 we fit the noise in

the observed data yi. However, when the errors in
the observed data, such as experimental DLS data,
are not exactly known, the use of Morozov’s or χ2

criterion fails to give a reliable solution. In this case,
the optimal regularization parameter (the iteration
number) may then be determined by considering
the L-curve.

We also note that in the SBL algorithm, the
statistical errors are taken to be the Gaussian type:
zero mean and constant standard deviation, while
the actual errors in the DLS data are different. For
experimental DLS data, we consider the squared
deviations of the data to have a Poisson profile, then
the deviations of the data yi are given by10–12

σ2
i ≈ 1 + y2

i

4Ay2
i

≡ σ̃2σ̂2
i , (26)

where the measured baseline A = 1/σ̃2 is taken
as an adjustable parameter in the L-curve, and

σ̂i =
√

(1 + y2
i )/4y

2
i are data dependent and will

be used to rescale our data. The expression (26)
shows a reasonable feature of a correlation function
that data at longer delay times have larger errors.

By taking the errors to have the form (26), we
perform a rescaling procedure on the error term in
Eq. (5) and the rescaled (weighted) residual norm
is given by

∥∥∥∥y − Φµ

σ̂

∥∥∥∥
2

=

√√√√ M∑
i=1

(
yi − yi

σ̂i

)2

. (27)

3. Data Analysis and Results

Since SBL is a novel method for reconstructing solu-
tions to inverse problems, it is necessary to exam-
ine its performance in the analysis of DLS data.
We evaluate its efficiency in reconstructing PSD for
polydisperse systems from simulated data and also
from experimental DLS data.

3.1. Simulated data

We simulate several sets of data from log-normal
distributions with known mean values and standard
deviations. These data provide references to setting
the criterion for selecting the optimal PSD. Gaus-
sian noise of RN/

√
107 is added to the first-order

TCF, where RN denotes Gaussian random noise of
zero mean and unit standard deviation. Unimodal
and bimodal distributions are considered for our
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Fig. 1. The solid curve denotes the exact distribution of
variance 0.973 used in the simulation. The optimal distri-
bution is given at the 3rd iteration. At the 4th iteration
and beyond, the distributions exhibit oscillatory behaviors
or multimodal structures.

simulations. For unimodal distributions, polydis-
persities or normalized variances of µ2/Γ

2 = 0.973
and 0.05 are used. For the bimodal distribution,
we consider peak ratio of Γ2/Γ1 = 2, where Γ1

and Γ2 are the mean values of the first and sec-
ond peaks, respectively. Both peaks have small vari-
ances: µ

(1)
2 /Γ2

1 = µ
(2)
2 /Γ2

2 = 0.01. The first-order
correlation data are generated at 136 delay times,
so that the χ2 statistic [Eq. (25)] defines a residual
norm of ‖Φµ − y‖2 =

√
136/107 ≈ 3.688 × 10−3.

From the three sets of simulated data, sev-
eral reconstructions at specified iterations from the
SBL algorithm are plotted in Figs. 1–3. The L-
curves from the reconstructions of the iterations
k = 1, 2, . . . , 100 are given in Figs. 4–6. By com-
paring their χ2 values at the first few iterations, we
would choose the reconstruction at the 3rd itera-
tion in Fig. 1, which has a relatively small Rnorm
of 3.926 × 10−3. This value becomes smaller with
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Fig. 2. The solid curve denotes the exact unimodal distribu-
tion of variance 0.05. The reconstruction at the 5th iteration
provides the optimal distribution. The distribution at the 6th
iteration exhibits an irregular feature.
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bution used in the simulation. The 6th iteration gives the
optimal distribution.
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Fig. 4. The L-curve from the reconstructions of iterations
k = 1, 2, . . . , 100 for the broad unimodal distribution of vari-
ance 0.973. At the 3rd iteration, Rnorm = 3.926 × 10−3,
while at the 4th iteration, Rnorm = 3.518 × 10−3.

increasing N > 100 and forms the vertex of the L-
curve in Fig. 4. The optimal distribution fits nicely
with the exact distribution. From the reconstruc-
tions in Figs. 2 and 3, their respective L-curves in
Figs. 5 and 6 indicate that the choices of optimal
distributions are specified by the 5th iteration in
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Fig. 5. The L-curve from the reconstructions of iterations
k = 1, 2, . . . , 100 for the narrow distribution of variance 0.05.
At the 4th iteration, Rnorm = 4.205×10−2, while at the 5th
iteration, Rnorm = 3.539 × 10−3.
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Fig. 6. The L-curve from the reconstructions of iterations
k = 1, 2, . . . , 100 for the bimodal distribution of peak ratio

Γ
2
2/Γ

2
1 = 2. At the 4th, 6th and 7th iterations, Rnorm =

4.554 × 10−3, 3.597 × 10−3 and 3.584 × 10−3, respectively.

Fig. 2 and 6th iteration in Fig. 3. We note that
the fluctuations of the L-curves at small iterations
are due to computational round-off errors and data
quality. The choices of the optimal distributions
agree very well with the exact distributions. We also
note that, in the SBL algorithm, an L-curve defines
a trajectory that approaches a fixed point of definite
solution norm with iterations.

3.2. Experimental data

In this section, we apply the SBL algorithm to ana-
lyze the DLS data from the ocular lenses of a fetal
calf, a Rhesus monkey (two years old), and a man
(about 40 years old). We use the diameter range
with dmin = d1 = 1nm and dmax = dN = 105 nm
for reconstructing the PSD. We consider the sta-
tistical errors in the DLS data to have a Poisson
profile and use Eq. (27) to define the L-curve. The
measurements of the DLS data were made in the
nuclear region of the lenses at room temperature
using the compact fiber optic DLS probe.1,2 The
TCF data from the lenses of the fetal calf, monkey,
and man were measured at 100 delay times from
20 µs to 8 × 103 µs.

Figures 7–9 show the reconstructions of the size
distributions of α-crystallin and aggregate from the
DLS data from the lenses of the fetal calf, mon-
key, and man, and Figs. 10–12 depict the L-curves
with iteration numbers. By following the analysis in
the previous section, we choose the iteration num-
bers for the optimal reconstructions with relatively
small Rnorm. From Figs. 10–12, we see that for
acceptable residual norms, the numbers of itera-
tions needed for the optimal reconstructions are:
eight for the calf, six for the monkey, and six for
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Fig. 7. The solid curve denotes the reconstruction of the
optimal size distribution of α-crystallin and aggregate in the
lens of the fetal calf. The distributions for d > 150 nm have
been rescaled by a factor of 30.
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Fig. 8. The solid curve denotes the reconstruction of the
optimal size distribution of α-crystallin and aggregate in the
lens of the monkey. The distributions for d > 80 nm have
been rescaled by a factor of 200.

the man. These optimal distributions exhibit mul-
timodal structures. By comparing these distribu-
tions, we see that there are peaks of α-crystallin
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Fig. 9. The solid curve denotes the reconstruction of the
optimal size distribution of α-crystallin and aggregate in the
lens of the man. The distributions for d > 500 nm have been
rescaled by a factor of 50.
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Fig. 10. The L-curve for the DLS data from the lens of
the fetal calf. The residual norms at the 5th, 8th, and 10th
iterations are respectively: Rnorm = 2.640 × 10−3, 2.229 ×
10−3, and 2.349 × 10−3.
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Fig. 11. The L-curve for the DLS data from the lens of
the monkey. The residual norms at the 4th, 6th, and 8th
iterations are respectively: Rnorm = 6.776 × 10−3, 3.545 ×
10−3, and 3.416 × 10−3.
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Fig. 12. The L-curve for the DLS data from the lens of the
man. The residual norms at the 4th, 6th, and 8th iterations
are respectively: Rnorm = 5.264 × 10−3, 3.608 × 10−3, and
3.545 × 10−3.

aggregates of large diameters. A significant peak
appears in the diameter range 200 nm � d � 600 nm
for the fetal calf, 400 nm� d � 4 × 103 nm for the
monkey, and 800 nm� d � 104 nm for the man. The

peak contribution is the smallest for the fetal calf
and largest for the man, indicating that aggregation
of α-crystallin increases with age. The characteris-
tics of the peaks in the distributions in Figs. 7–9
are listed in Table 1.

To understand quantitatively the implication
of protein aggregation in an ocular lens in early
cataractogenesis, we refer to a clinical study4 where

Table 1. The results of the PSD from the SBL analysis are
listed. For the iterations corresponding to the reconstructions
shown in Figs. 7–9, the first, second, third, and fourth rows
list, respectively, the areas (unnormalized), the average diame-
ters (in nm), the standard deviations, and the variances for the
peaks in the reconstructions. The α-crystallin indices (ACI)
are also given.

Lens Iteration Peak ACI (%)

Fetal calf 8th 0.0933 0.2725 0.1241 74.67
14.18 25.03 329.7
1.81 1.89 61.63
0.016 0.006 0.035

9th 0.0835 0.2830 0.1320 73.52
13.24 24.99 334.93
1.60 1.39 35.34
0.015 0.003 0.011

10th 0.0777 0.2858 0.1273 74.06
13.13 25.02 333.45
1.30 1.35 26.61
0.01 0.003 0.006

Monkey 4th 0.3961 0.2152 64.80
21.05 5865
9.10 14000
0.187 5.66

5th 0.3052 0.1213 0.2040 67.64
15.75 42.70 1726
2.41 25.24 1149
0.023 0.35 0.44

6th 0.2827 0.1149 0.2031 64.05
15.96 40.11 1539
1.86 13.94 650
0.014 0.12 0.18

Man 6th 0.0813 0.0430 0.2460 33.57
10.60 76.47 3253
3.29 40.61 1399
0.096 0.28 0.19

7th 0.0839 0.0402 0.2481 33.34
11.03 75.10 2917
3.25 15.23 627
0.087 0.041 0.051

8th 0.0825 0.0384 0.2467 32.89
11.35 74.40 2880
2.92 10.28 450
0.066 0.019 0.024
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an index called the α-crystallin index [ACI (%)]
was introduced to provide a measure of unbound
α-crystallin in a lens. The α-crystallin, which acts
as a molecular chaperone protein, has been shown
to bind other damaged lens proteins to prevent
their aggregation. In their study, Datiles et al. have
shown that DLS is able to clinically detect loss
of low-molecular-weight α-crystallin proteins even
in clinically clear lenses. ACI measurements may
be useful in identifying patients at high risk for
developing cataract. In particular, from the lenses
of humans aged 7–86 years, they showed that ACI
was significantly lower in lenses with higher levels
of nuclear opacity and with age.

From our reconstructions of the size distribu-
tions of α-crystallin and their aggregates in the
lenses of the fetal calf, monkey, and man, we calcu-
late the ACI of these lenses and list them in Table 1.
These ACI values of (clear) lenses show signs of
protein aggregation. In particular, the human lens
has greater protein aggregation than either the fetal
calf or the monkey lens. Also, referring to the his-
togram plot for the different age groups,4 we see
that an ACI of 33% for the human lens is much
higher than the average ACI value for the 36–45 age
group.

As an alternative, simple approach to evalu-
ate the efficiency of the SBL algorithm for early
cataract detection, we can obtain the sparse dis-
tributions from the DLS data. A sparse distribu-
tion is the solution given by the fixed point of an
L-curve. Figure 13 shows the sparse distributions
of α-crystallin and their aggregates for the calf,
monkey, and man. The significant contributions in
percentage are given at the dominant particle diam-
eters. The sparse solutions agree strongly with the
ACI values in Table 1.

4. Discussion and Conclusion

In this paper, we have described the SBL algo-
rithm, which is a fully probabilistic analysis tool
and can be easily implemented, for reconstructing
solutions to inverse problem in DLS. We have shown
how to apply the algorithm to analyze DLS data
to obtain efficiently reliable estimates of PSD for
particle systems.

To evaluate the efficiency of the SBL algorithm,
we have considered the simulated data from log-
normal distributions and experimental data from
the ocular lenses of a fetal calf, a Rhesus monkey,
and a man. By using the iterative nature of the
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Fig. 13. The percentage of α-crystallin and aggregate in the
ocular lenses of the fetal calf, monkey and man.

SBL algorithm, we have developed an approach to
reconstruct optimal solution based on the L-curve
method. For the simulated data at a given noise
level, the algorithm has been shown to give opti-
mal distributions that agree well with the exact
distributions. The algorithm was then applied to
reconstruct smooth optimal PSD of α-crystallin and
their aggregates in the lenses of the fetal calf, mon-
key and man. From their optimal size distributions,
we see that the size and amount of α-crystallin
aggregate increase with age. Similar results can
also be obtained (Fig. 13) by noting that the
SBL algorithm gives sparse solution to an inverse
problem.

Finally, we should note that the use of the
SBL algorithm can be computationally demanding.
This is particularly the case when we are inter-
ested in very smooth, optimal distributions, which
are determined iteratively with a large number of
grid points N that each iteration requires inversion
of an N × N matrix. However, for the purpose of
determining the α-crystallin index of a lens, it suf-
fices to use N = 30 to obtain the sparse distribu-
tion. In view of its efficiency, the SBL algorithm
should receive more attention as an alternative to
other analysis tools for the analysis of DLS data in
biological studies and, especially, in clinical stud-
ies of the lens, where results of high reliability are
essential.
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